Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 479, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079009

RESUMO

Although theoretically predicted, the simultaneous excitation of several resonant modes in sunspots has not been observed. Like any harmonic oscillator, a solar magnetic flux tube can support a variety of resonances, which constitute the natural response of the system to external forcing. Apart from a few single low order eigenmodes in small scale magnetic structures, several simultaneous resonant modes were not found in extremely large sunspots. Here we report the detection of the largest-scale coherent oscillations observed in a sunspot, with a spectrum significantly different from the Sun's global acoustic oscillations, incorporating a superposition of many resonant wave modes. Magnetohydrodynamic numerical modeling agrees with the observations. Our findings not only demonstrate the possible excitation of coherent oscillations over spatial scales as large as 30-40 Mm in extreme magnetic flux regions in the solar atmosphere, but also paves the way for their diagnostic applications in other astrophysical contexts.

2.
Philos Trans A Math Phys Eng Sci ; 379(2190): 20200182, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33342373

RESUMO

Stokes inversion codes are crucial in returning properties of the solar atmosphere, such as temperature and magnetic field strength. However, the success of such algorithms to return reliable values can be hindered by the presence of oscillatory phenomena within magnetic wave guides. Returning accurate parameters is crucial to both magnetohydrodynamics (MHD) studies and solar physics in general. Here, we employ a simulation featuring propagating MHD waves within a flux tube with a known driver and atmospheric parameters. We invert the Stokes profiles for the 6301 Å and 6302 Å line pair emergent from the simulations using the well-known Stokes Inversions from Response functions code to see if the atmospheric parameters can be returned for typical spatial resolutions at ground-based observatories. The inversions return synthetic spectra comparable to the original input spectra, even with asymmetries introduced in the spectra from wave propagation in the atmosphere. The output models from the inversions match closely to the simulations in temperature, line-of-sight magnetic field and line-of-sight velocity within typical formation heights of the inverted lines. Deviations from the simulations are seen away from these height regions. The inversions results are less accurate during passage of the waves within the line formation region. The original wave period could be recovered from the atmosphere output by the inversions, with empirical mode decomposition performing better than the wavelet approach in this task. This article is part of the Theo Murphy meeting issue 'High-resolution wave dynamics in the lower solar atmosphere'.

3.
Philos Trans A Math Phys Eng Sci ; 379(2190): 20200184, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33342381

RESUMO

We report detection of oscillations in brightness temperature, size and horizontal velocity of three small bright features in the chromosphere of a plage/enhanced-network region. The observations, which were taken with high temporal resolution (i.e. 2 s cadence) with the Atacama large millimetre/ submillimetre array (ALMA) in Band 3 (centred at 3 mm; 100 GHz), exhibit three small-scale features with oscillatory behaviour with different, but overlapping, distributions of period on the order of, on average, 90 ± 22 s, 110 ± 12 s and 66 ± 23 s, respectively. We find anti-correlations between perturbations in brightness, temperature and size of the three features, which suggest the presence of fast sausage-mode waves in these small structures. In addition, the detection of transverse oscillations (although with a larger uncertainty) may also suggest the presence of Alfvénic oscillations which are likely representative of kink waves. This work demonstrates the diagnostic potential of high-cadence observations with ALMA for detecting high-frequency magnetohydrodynamic waves in the solar chromosphere. Such waves can potentially channel a vast amount of energy into the outer atmosphere of the Sun. This article is part of the Theo Murphy meeting issue 'High-resolution wave dynamics in the lower solar atmosphere'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2190): 20200169, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33342388

RESUMO

The magnetic and convective nature of the Sun's photosphere provides a unique platform from which generated waves can be modelled, observed and interpreted across a wide breadth of spatial and temporal scales. As oscillations are generated in-situ or emerge through the photospheric layers, the interplay between the rapidly evolving densities, temperatures and magnetic field strengths provides dynamic evolution of the embedded wave modes as they propagate into the tenuous solar chromosphere. A focused science team was assembled to discuss the current challenges faced in wave studies in the lower solar atmosphere, including those related to spectropolarimetry and radiative transfer in the optically thick regions. Following the Theo Murphy international scientific meeting held at Chicheley Hall during February 2020, the scientific team worked collaboratively to produce 15 independent publications for the current Special Issue, which are introduced here. Implications from the current research efforts are discussed in terms of upcoming next-generation observing and high-performance computing facilities. This article is part of the Theo Murphy meeting issue 'High-resolution wave dynamics in the lower solar atmosphere'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...